136 research outputs found

    Bi-Real Net: Enhancing the Performance of 1-bit CNNs With Improved Representational Capability and Advanced Training Algorithm

    Full text link
    In this work, we study the 1-bit convolutional neural networks (CNNs), of which both the weights and activations are binary. While being efficient, the classification accuracy of the current 1-bit CNNs is much worse compared to their counterpart real-valued CNN models on the large-scale dataset, like ImageNet. To minimize the performance gap between the 1-bit and real-valued CNN models, we propose a novel model, dubbed Bi-Real net, which connects the real activations (after the 1-bit convolution and/or BatchNorm layer, before the sign function) to activations of the consecutive block, through an identity shortcut. Consequently, compared to the standard 1-bit CNN, the representational capability of the Bi-Real net is significantly enhanced and the additional cost on computation is negligible. Moreover, we develop a specific training algorithm including three technical novelties for 1- bit CNNs. Firstly, we derive a tight approximation to the derivative of the non-differentiable sign function with respect to activation. Secondly, we propose a magnitude-aware gradient with respect to the weight for updating the weight parameters. Thirdly, we pre-train the real-valued CNN model with a clip function, rather than the ReLU function, to better initialize the Bi-Real net. Experiments on ImageNet show that the Bi-Real net with the proposed training algorithm achieves 56.4% and 62.2% top-1 accuracy with 18 layers and 34 layers, respectively. Compared to the state-of-the-arts (e.g., XNOR Net), Bi-Real net achieves up to 10% higher top-1 accuracy with more memory saving and lower computational cost. Keywords: binary neural network, 1-bit CNNs, 1-layer-per-blockComment: Accepted to European Conference on Computer Vision (ECCV) 2018. Code is available on: https://github.com/liuzechun/Bi-Real-ne

    The Role of Chain-of-Thought in Complex Vision-Language Reasoning Task

    Full text link
    The study explores the effectiveness of the Chain-of-Thought approach, known for its proficiency in language tasks by breaking them down into sub-tasks and intermediate steps, in improving vision-language tasks that demand sophisticated perception and reasoning. We present the "Description then Decision" strategy, which is inspired by how humans process signals. This strategy significantly improves probing task performance by 50%, establishing the groundwork for future research on reasoning paradigms in complex vision-language tasks

    GANHead: Towards Generative Animatable Neural Head Avatars

    Full text link
    To bring digital avatars into people's lives, it is highly demanded to efficiently generate complete, realistic, and animatable head avatars. This task is challenging, and it is difficult for existing methods to satisfy all the requirements at once. To achieve these goals, we propose GANHead (Generative Animatable Neural Head Avatar), a novel generative head model that takes advantages of both the fine-grained control over the explicit expression parameters and the realistic rendering results of implicit representations. Specifically, GANHead represents coarse geometry, fine-gained details and texture via three networks in canonical space to obtain the ability to generate complete and realistic head avatars. To achieve flexible animation, we define the deformation filed by standard linear blend skinning (LBS), with the learned continuous pose and expression bases and LBS weights. This allows the avatars to be directly animated by FLAME parameters and generalize well to unseen poses and expressions. Compared to state-of-the-art (SOTA) methods, GANHead achieves superior performance on head avatar generation and raw scan fitting.Comment: Camera-ready for CVPR 2023. Project page: https://wsj-sjtu.github.io/GANHead

    HyperStyle3D: Text-Guided 3D Portrait Stylization via Hypernetworks

    Full text link
    Portrait stylization is a long-standing task enabling extensive applications. Although 2D-based methods have made great progress in recent years, real-world applications such as metaverse and games often demand 3D content. On the other hand, the requirement of 3D data, which is costly to acquire, significantly impedes the development of 3D portrait stylization methods. In this paper, inspired by the success of 3D-aware GANs that bridge 2D and 3D domains with 3D fields as the intermediate representation for rendering 2D images, we propose a novel method, dubbed HyperStyle3D, based on 3D-aware GANs for 3D portrait stylization. At the core of our method is a hyper-network learned to manipulate the parameters of the generator in a single forward pass. It not only offers a strong capacity to handle multiple styles with a single model, but also enables flexible fine-grained stylization that affects only texture, shape, or local part of the portrait. While the use of 3D-aware GANs bypasses the requirement of 3D data, we further alleviate the necessity of style images with the CLIP model being the stylization guidance. We conduct an extensive set of experiments across the style, attribute, and shape, and meanwhile, measure the 3D consistency. These experiments demonstrate the superior capability of our HyperStyle3D model in rendering 3D-consistent images in diverse styles, deforming the face shape, and editing various attributes
    • …
    corecore